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Jarzynski’s equation �JE� has been known to relate free energy change of a system to statistical distribution
of work done on the system for an arbitrary process. In the present work, we first establish the validity
condition of JE for boundary switching processes. The validity condition of JE is examined for an example of
spontaneous irreversible processes, for which, obviously, JE does not hold. We find that the free energy
difference between two configurational states with different phase-space volume cannot be correctly estimated
by JE for any adiabatic boundary switching process.
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Free energy is one of the central concepts in thermody-
namics and statistical thermodynamics, whose quantification
is of great interest in many problems of science. It is well
established in conventional thermodynamics that free energy
difference FB−FA���FBA� between two equilibrium states,
A and B, of a system is equal to the work done on the system
during the isothermal reversible transition process from state
A to state B. However, for other transition processes, there
had not been any quantitative relationship between free en-
ergy difference and work before Jarzynski proposed his
equation a decade ago.

Jarzynski’s equation �JE� relates the difference
�FBA�=FB−FA� of the free energy of state B from that of
state A to statistical distribution PA→B�W� of work W done
on the system during an arbitrary transition process from
state A to state B by

exp�− ��FBA� =� exp�− �W�PA→B�W�dW , �1�

with � being the inverse temperature �1�. As Eq. �1� suggests
that free energy difference could be measured from transition
processes other than the reversible one, it has drawn much
attention. JE was rederived for a variety of model systems
�2–8�, and verified experimentally for a single RNA stretch-
ing process �9,10�.

An exception to this trend for JE was Cohen and Mauzer-
all’s question about the correctness of JE for a general irre-
versible process, during which distribution of a system devi-
ates from the Boltzmann distribution and temperature is not
well defined �11,12�. In response to the criticism, Jarzynski
presented another derivation of Eq. �1� and kept his assertion
that, if an initial state A of the system is a thermal equilib-
rium state with temperature �−1, Eq. �1� holds for irreversible
processes as well as reversible ones even though the tem-
perature of the system is not well defined or deviates from
�−1 during the dynamics �13�. Afterward, while difficulty or
inefficiency of its practical application has been noted
�14–16�, JE has seemed to be accepted as a general equation
that holds for any system undergoing an arbitrary process
�6–8,17–26�.

However, recently, it was shown for an exactly solvable
model that prediction of Eq. �1� for free energy difference is
dependent on the shape of the transition path whereas free
energy difference cannot be �27�. Therefore it is now an im-
portant issue to define the validity condition of JE. In this
work, we first establish the validity condition of JE for an
adiabatic boundary switching process. Recently, Presse and
Silbey discussed important issues in practical applicability of
JE to macroscopic systems for the case where JE is formally
correct �16�. In comparison, the question we address here is
under what condition JE is formally correct for a boundary
switching process.

In Jarzynski’s derivations of JE for a parameter switching
process �1,13�, it is implicitly assumed that boundary condi-
tions imposed on a system remain intact from the parameter
switching process. Nevertheless, defining the application
range of JE for a boundary switching process seems neces-
sary because we are often interested in free energy difference
between two equilibrium states defined by different bound-
ary conditions. When we identify the canonical equilibrium
state of a system by temperature T and other state parameters
R, the latter state parameters R often represent a boundary
condition or a constraint imposed on microscopic variables
of the system in the equilibrium state. For example, the ca-
nonical equilibrium state of a system of gas particles whose
position vectors r j satisfy the constraint r j �V, with V being
a volume confining the gas system, may be represented by
�T ,V�. The equilibrium configurational state of a chain poly-
mer composed of only those microscopic configurational
states of the chain polymer satisfying constraint �ri−r f�
=RETE with ri and r f being the position vectors of the initial
and the final units of the chain polymer may be identified by
�T ,RETE�c. Additional examples for equilibrium states iden-
tified by boundary conditions include equilibrium configura-
tional states of a molecular pair identified by the pair sepa-
ration, equilibrium configurational states of a biopolymer
identified by its radius of gyration, and so on. In these ex-
amples, boundary conditions of systems are dependent on
values of state parameters of the systems.

In the case where the system in state A is subject to a
boundary condition different from that of the system in state
B, the phase-space domain �eq�A� accessible to microscopic
states of the system in state A is different from �eq�B� of the
system in state B. We find that �FBA predicted by Eq. �1� is
correct for an adiabatic boundary switching process only if
the latter transforms the phase-space domain �eq�A� of the*Jaeyoung@cau.ac.kr
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initial equilibrium state A into �eq�B� of the final equilibrium
state B at the very end of the adiabatic switching process.
The validity condition is discussed for two adiabatic expan-
sion processes of an ideal gas system. The Liouville theorem
indicates that the validity condition cannot be satisfied for
any adiabatic boundary switching process when JE is applied
to estimate the free energy difference between configura-
tional states with different phase-space volumes from each
other.

Free energy difference �F10 between two equilibrium
states, �T ,R=R0� and �T ,R=R1�, is given by

exp�− ��F10� =

�
�eq�R1�

d� exp�− �H1����

�
�eq�R0�

d�0 exp�− �H0��0��
. �2�

Here the phase-space domain �eq�R0� of state �T ,R=R0� can
be different from the phase-space domain �eq�R1� of state
�T ,R=R1�. Hj��� and ��eq�Rj�

d�, respectively, denote the
Hamiltonian of the system at microscopic state � and the
sum over all microscopic states composing the equilibrium
phase-space domain of our system with state parameter R
being equal to Rj.

In comparison, the prediction �F10
J of Eq. �1� for free

energy difference is given by

�F10
J = − �−1 ln � dW PR0→R1

�W�exp�− �W� , �3�

where PR0→R1
�W� denotes the probability distribution of

work done on the system during an arbitrary process in
which the value of the state parameter R switches from R0 to
R1. In this work, we will confine ourselves to the case where
the parameter switching process is an adiabatic process, dur-
ing which dynamics of the system obeys the Hamilton equa-
tion of motion. The system is initially in state �T ,R0� in
thermal equilibrium with a heat bath, but is isolated from the
heat bath during the parameter switching process in which
state parameter R�t� of the system is varied in a controlled
manner from R0 to R1 in time interval �0, tS�. Note here that
the adiabatic process alone cannot transform the initial state
�T ,R0� into the target equilibrium state �T ,R1�. To reach the
target equilibrium state, the system should be coupled again
to the heat bath after the adiabatic process. However, predic-
tion of Eq. �3� for the free energy difference has nothing to
do with the thermal relaxation process necessary for the sys-
tem to reach the final state �T ,R1� after the adiabatic process.

We will calculate �F10
J in Eq. �3� and compare it to �F10

given in Eq. �2�. Let us first consider the system whose mi-
croscopic state happens to be �0 at time 0 at which the adia-
batic process begins. During the adiabatic process in which
we control the time evolution of state parameter R, the mi-
croscopic state �� of the system evolves from �0 according
to classical dynamics. Because the dynamics of our system is
deterministic throughout the adiabatic process with a given
time evolution R�t� of state parameter R, the phase-space
trajectory of our system is unique for each initial micro-
scopic state �0. Let ����t��0� denote the unique microscopic

state of our system at time t evolved from initial microscopic
state �0 for the given adiabatic process. The work done on
the system with initial state �0 during the adiabatic process
in time interval �0, tS� is given by

W��0� = H1�����tS��0�� − H0��0� . �4�

As Eq. �4� indicates that work W done on the system during
the adiabatic process is a function of �0, PR0→R1

�W� is re-
lated to the initial equilibrium distribution Peq��0� of �0 by
P�W�=�d�0��W−W��0��Peq��0� with W��0� given by Eq.
�4�.

With this at hand one can rewrite the right-hand side of
Eq. �3� as

	exp�− �W�
 = �
�eq�R0�

d�0 exp�− �W��0��

�
exp�− �H0��0��

�
�eq�R0�

d�0� exp�− �H0��0���
. �5�

Substituting Eq. �4� into Eq. �5�, we get

	exp�− �W�
 =

�
�0

d�0 exp�− �H1�����ts��0���

�
�0

d�0� exp�− �H0��0���
. �6�

Because of the uniqueness of mechanical motion we can
think of the initial phase point �0 as a function of the phase-
space point �� at time tS, i.e., �0=�0�tS ,���, and change the
integration variable from �0 to ��: ��0

d�0=����tS�d���
��0

��� � in
the integral in the denominator on the right-hand side of Eq.
�6�. Here, �

��0

��� � denotes the Jacobian determinant and
����ts�

d�� denotes the sum over the phase-space domain
���tS� accessible to microscopic states of our system at time
tS or at the very end of the adiabatic process. In general,
���tS� can be different from �eq�R1� although the value of
R�t1� is R1. An example of the latter will be discussed shortly
in this work. It is well established that as long as the dynam-
ics of the system obeys the Hamilton equation of motion, we
have �

��0

��� �=1 �28�. Consequently, Eq. �6� becomes

	exp�− �W�
 =

�
���tS�

d� exp�− �H1����

�
�eq�R0�

d�0� exp�− �H0��0���
. �7�

Comparing Eq. �7� with Eq. �2�, one can see that JE holds if
and only if
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�
��ts�

d� exp�− �H1����

�
�eq�R1�

d� exp�− �H1����
= 1. �8�

Equation �8� indicates that JE is correct for an adiabatic
boundary switching process only if the phase-space exten-
sion ���tS� of the system with R=R1 at the very end of the
adiabatic process coincides with the equilibrium phase-space
extension �eq�R1� of the system with R=R1. In other words,
JE holds for an adiabatic boundary switching process if the
adiabatic process transforms the phase-space domain of the
initial equilibrium state to that of the final equilibrium state,
at the end of the adiabatic process.

The validity condition is trivially satisfied when the initial
equilibrium state has the same boundary conditions as the
final equilibrium state and the adiabatic process changes only
the finite potential imposed on the system, not the boundary
conditions. However, in many situations, we are interested in
the free energy difference between two equilibrium states,
one of which satisfies different boundary conditions from the
other. In this case, to estimate the free energy difference
based on Eq. �1�, one has to perform processes that switch

the boundary conditions imposed on the system, for which
the validity condition of JE may not be always satisfied.

To present the concept of the validity condition of JE
concretely, we examine the validity condition of JE for two
adiabatic expansion processes of a one-dimensional ideal gas
system. As depicted in Fig. 1, in state A, the gas particles of
the system are confined in the left-hand side of the partition
and the vacuum is in the right-hand side, being in thermal
equilibrium with a heat bath. Let the position of the partition
be the unit of our length scale. In comparison, state B desig-
nates the thermal equilibrium state of the ideal gas system
confined in the box with length 2. The difference �FBA of
free energy of state B from that of state A is well known to
be −�−1N ln 2 with N being the number of gas particles in
the system.

The lower leftmost panel in Fig. 1 shows a part of the
phase-space domain �eq�A� of a single gas particle of the
system in state A, which represents every microscopic state
of a gas particle satisfying 0�x�1 and −	� p�	 with x
and p being the position and the momentum of the gas par-
ticle. In comparison, the phase-space domain �eq�B� of a gas
particle of the system in state B represents every microscopic
state of the gas particle satisfying 0�x�2 and −	�v�	.
The lower middle panel shows how the initial phase-space
extension �eq�A� is transformed at time tS by the adiabatic

FIG. 1. State A and state B represent the two states of a one-dimensional ideal gas system in thermal equilibrium with a heat bath. The
phase-space domain �eq�A� of a single gas particle in the system at state A is given by 0�x�1 and −	� p�	, and the phase-space domain
�eq�B� of a single gas particle in the system at state B is given by 0�x�2 and −	� p�	, where x and p denote the position and the
momentum of the gas particle, respectively. �a�b�

� �tS� denotes the phase-space domain at time tS transformed from �eq�A� by �a� the adiabatic
expansion into vacuum and �b� the adiabatic expansion in which the position of the partition increases from 1 to 2 with a unit speed. The
value of tS is 1.

BRIEF REPORTS PHYSICAL REVIEW E 77, 042101 �2008�

042101-3



expansion into vacuum initiated by removing the partition
instantly at time 0 �29�. The mass of the gas particle is cho-
sen to be the unit mass. The figure shows that the phase-
space domain �a

��tS� transformed from �eq�A� by adiabatic
expansion into vacuum does not coincide with �eq�B�, and
the validity condition of JE is not satisfied for the adiabatic
expansion into vacuum.

Recently, it was asserted that the initial state A in this
example is not a thermal equilibrium state and this is the
reason for the breakdown of JE for the adiabatic expansion
into vacuum �30�. Nevertheless, it can be shown that, for the
same initial condition, the validity condition of JE is satisfied
for other adiabatic expansion processes. The figure in the
lower rightmost panel shows the phase-space domain �b

��tS�
of a single gas particle at time tS transformed from �eq�A� by
the adiabatic expansion process in which the position of the
partition is controlled to increase in a constant speed �29�.
One can see that �

b
*�tS� coincides with �eq�B�; the validity

condition of JE is satisfied for the latter adiabatic expansion
process. In the model calculation, the speed of the partition is
chosen to be the unit speed so that the value of tS is 1 in the
unit system. One can show that the prediction of JE is indeed
correct for the latter adiabatic expansion process of an ideal
gas system �15�.

The adiabatic expansion into vacuum is an example of
irreversible spontaneous processes initiated by changing
boundary conditions imposed on systems for which, obvi-
ously, JE does not hold. Note that the breakdown of JE is not
limited to the spontaneous processes. If ��eq�X�� is the phase-
space volume of state X defined by ��eq�X�d�, the validity

condition of JE cannot be satisfied for any adiabatic process
when ��eq�A�� exists �31� and differs from ��eq�B�� because
of the Liouville theorem �28�. The latter validity condition of
JE is useful when we are interested in free energy difference
between two configurations of a system, of which phase-
space volumes are well defined. Frequently encountered ex-
amples for such cases will be published elsewhere.

In this work, we first establish the validity condition of JE
for adiabatic boundary switching processes. We illustrate the
concept of the validity condition for two adiabatic expansion
processes of an ideal gas system, and show that the validity
condition of JE is not satisfied for an example of irreversible
spontaneous processes. The validity condition of JE cannot
be satisfied for any adiabatic boundary switching processes
when the phase-space volume of the initial equilibrium state
exists and differs from that of the final equilibrium state.
That is to say, the free energy difference between two con-
figurational states cannot be correctly estimated by JE for
any adiabatic boundary switching process unless the two
configurational states have the same phase-space volume.
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